GENETIC RELATIONSHIPS OF THE PORTUGUESE LIDIA CATTLE POPULATIONS

P. Correia¹, E. Baron¹, J. Cañón², F. J. Fernández², F. Moreira da Silva³

¹Animal Reproduction, Department of Agrarian Sciences, University of the Azores, CITA-A, 9701-851 Angra do Heroísmo, Portugal
²Laboratorio de Genética, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid.
³Dpto. Técnico, Unión de Criadores de Toros de Lidia, Paseo de Eduardo Dato, 7, 28010 Madrid.

Introduction

In Portugal the origin of specific Lidia Cattle breeders started at XIX century, with the crossbreed from Spanish Lidia Cattle animals and the aggressive Portuguese native cattle.

The purpose of this work was, with DNA information provided by autosomal microsatellites amplification and genealogic information, to correlate and identify the relationships of the different Spanish lineages within the two Portuguese Lidia Cattle populations (the Brava dos Açores and Casta Portuguesa).

Materials and Methods

Blood samples were collected with Magic Buffer® (Biogen Diagnóstica, Madrid, Spain), from 120 animals dispersed in two specific Portuguese Lidia cattle lineages described in Table 1.

Table 1: Specific Portuguese herds in the study.

<table>
<thead>
<tr>
<th>Lineage</th>
<th>Herd</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brava dos Açores</td>
<td>Rego Botelho (RB)</td>
<td>Azorean islands</td>
</tr>
<tr>
<td>Brava dos Açores</td>
<td>José Albino Fernandes (JAF)</td>
<td>Portugal mainland</td>
</tr>
<tr>
<td>Casta Portuguesa</td>
<td>Eliseu Gomes (EG)</td>
<td>Portugal mainland</td>
</tr>
<tr>
<td>Casta Portuguesa</td>
<td>Irmãos Dias (ID)</td>
<td>Portuguese mainland</td>
</tr>
</tbody>
</table>

The Autosomal Information from Spanish Lidia cattle lineages was used from Gene bank from the Laboratory of Genetics at the College of Veterinary Medicine at the Complutense University of Madrid. A total of 24 ISAG-FAO microsatellites was selected and distributed among the various chromosomes according to their distances and polymorphic content

Wright’s Statistics parameters were analysed according to Nei (1987), as well the, FST distances. The null distributions of FST and FIS were approximated by permuting alleles 1000 times within each lineage using FSTAT (http://www2.unil.ch/popgen/softwares/fstat.htm) and sequential Bonferroni (Rice 1989) was applied for multiple test correction. The PHYLIP software (http://evolution.genetics.washington.edu/phylip.html) was used to perform genetic relationships between lineages using pairwise Reynolds distances (Reynolds et al. 1983) and used to construct a Neighbour-joining (NJ) tree with 1000 bootstrap resamplings to assess their consistency.

Results and Discussion

In the Azorean herds, the values of FST were 4.90% between RB and EG, 6.00% for RB and JAF, and 7.10% with respect to JAF and EG. The mutual origin of the Azorean herds or a possible genetic drift in a recent past between the Azorean herds in this study can explain the reduced values of FST distances when compared with typical Lidia Cattle as cited by Cañón et al. (2008).

When a comparison was carried out in the Neighbor-Joining Tree (Figure 1), the Azorean herds were closer to the Saltillo, Santa Coloma and Gamero Cívico lineages. This information can explain the influences from the Portuguese herd Pinto Barreiros in all Portuguese Lidia Cattle breeders described by Lucas (2006). In the other hand the herd from Casta Portuguesa (ID), was located in the same node of Miura lineage. Only in XIX century occurs genetics drift between Miura lineage and Portugal to the famous Portuguese herd of Palha Blanco (Lucas, 2006).

Conclusions

Results of the present study allow concluding that, especially the Portuguese and Spanish Lidia Cattle lineages, are directly associated to all genealogical history of Azoreans and mainland Portuguese breeders.

References


Acknowledgments

We wish to acknowledge the financial support of the DRDA and CITA-A.